Bioplastics in Medical Devices

Overcoming Challenges and Unlocking Potential

Piotr Mazurek pima@emendo.com +45 21 77 40 69 Scientific Senior Consultant PhD Polymer Science

emendo

Research & Development

Hanne Everland he@emendo.com +45 93 98 08 64 Vice President PhD Polymer Science

AGENDA

CONFIDENTIAL - All use of this material without specific permission from Emendo Consulting Group A/S ("ECG") is strictly prohibited . DISCLAIMER: This presentation is for the objective intended by ECG. ECG bears no fability for any other use thereof.

3

Emendo Consulting Group

We empower people and foster the good story

Established in 2006

90% of our business is within pharma and manufacturing industries. We have 5 offices across Denmark, Germany, and the US. Our total staff is +210 people, mainly engineers and scientists.

READ MORE BY VISITING WWW.EMENDO.COM

EMENDO R&D SCIENTIFIC SERVICES

We can assist in all product development phases with a sustainable edge

CONFIDENTIAL - All use of this material without specific permission from Emendo Consulting Group A/S ("ECG") is strictly prohibited. DISCLAIMER: This presentation is for the objective intended by ECG. ECG bears no liability for any other use thereof.

5

Relevant fields of expertise within product sustainability

Requirements for plastics are strict in MedTech

Most used plastics in MedTech

- Devices: PVC, PP, PE, ABS, PC, PU
- Packaging: PE, PP, PET, PVC, PS

Key observation:

Engineers have a strong preference for using materials they already know. ...even if it means overdesigning and overpaying...

Material requirements

- Mechanical properties
- Thermal stability
- Chemical resistance
- Compatibility with sterilization
- Compatibility with reprocessing (reusable devices)

Regulatory & other requirements

- Biocompatibility
- Traceability
- Material availability
- Material consistency
- Stable supply chain
- Need to update authorities about material changes

High material and regulatory **requirements** make material **transitions** time-consuming and **challenging**. There is a **justified skepticism** towards new 'exotic' materials.

MedTech currently focuses on bio-based non-biodegradable plastics

ISCC PLUS certifies different chain of custody approaches

"Bio-based and fossil-based materials are treated separately in the supply chain and in all manufacturing steps. The final product consists only of certified material."

<complex-block>

Bioplastics

Emendo

Market

Challenges

Take-aways

& Carbon Certificat

"Bio-based material is mixed with fossil-based material during the manufacturing processes in the supply chain and separated in bookkeeping. The final material consists of mixed input materials."

"Mass balance enables the use of bio-based feedstock (biogenic carbon) in intermediates or final products, and subsequent emission savings, where the complexity of the value chains or the level of scale does not yet allow for a full segregated production."

emendo

CONFIDENTIAL - All use of this material without specific permission from Emendo Consulting Group A/S ("ECG") is strictly prohibited. DISCLAIMER: This presentation is for the objective intended by ECG. ECG bears no liability for any other use thereof.

Bio-attributed plastics are produced using the mass balance approach

The mass balance principle suggests that your products likely contain some bio-content already now.

Bio-attributed plastics are chemically identical to their fossil-based counterparts.

The **mass balance** concept is **not ideal**, but it has a great significance for the **transformation momentum** of the chemical industry.

The mass balance enables a **stepwise** but **continuous increase** of the renewable carbon share.

Additional note: **'Mass balance and free attribution'** (MBFA) is an important term that many are not familiar with.

Vioneo – pioneering fossil-free manufacturing of POs from bio-methanol

- Fully fossil-free PP and PE produced from green methanol containing only biogenic CO2, eliminating fossil CO2 from the feedstock
- PP and PE with a market leading fossil reduction, **saving up to 6kg of CO2** per kilogramme of plastic, and with the lowest carbon abatement cost in the market
- Drop-in, virgin quality plastics with identical qualities as conventional plastics, requiring no process or product modifications
- Fully **segregated** and **traceable** from input to output, without any use of fossil infrastructure or mixed feedstock

https://vioneo.com/

Market

Selected relevant material suppliers of bio-attributed plastics

The market of bio-attributed plastics is rapidly developing.

nov

12

Market

Essential information on the market of bio-based plastics

Information extracted from market reports on bio-based polymers generated by the Nova Institute and European Bioplastics.

- In 2024, the total production volume of bio-based polymers was 4.2 million tonnes, which is around 1% of the total production volume of fossil-based polymers.
- Bio-based polymers will grow by 13% per year (CAGR) between 2024 and 2029, which is significantly higher than the overall growth of polymers (2–3%).
- Asia and North America will drive bio-based polymer capacity growth. Europe's market share is expected to decline by 2029.

Substantial carbon footprint benefits vs. premiums

Large portion of emissions comes from raw materials

Bio-attributed plastics offer substantial carbon footprint benefits

Premiums for bio-attributed plastics

Take-aways

Scope emissions of a typical MedTech company

Examples of carbon footprints of plastics

Data on fossil plastics obtained from *PlasticsEurope* (Eco-profiles set).
Data on bio-attributed plastics depicts examples of commercially

- available resins.
- Carbon footprint of bio-attributed plastics were assessed following the $\mbox{-}1\mbox{/+}1$ approach.

- Premiums are usually around 30% 100% of base price
- Premiums usually depend on:
 - Bio-attribution level
 - Type of polymer
 - Type of feedstock
- Impact on **COGS**:
 - Marginal for expensive devices
 - Noticeable for cheaper devices
- Implementation costs:
 - Marginal for 'drop ins'
 - Same as conventional material changes for 'non-drop ins'

Accounting for biogenic carbon remains a challenge

Brand owners must decide on the approach to ensure consistency of current and future carbon footprint calculations.

0/0 approach

Pros:

- Simplicity in LCA
- Prevents overestimating benefits
- Less risk of misreporting

Cons:

- Underestimates biogenic carbon benefits
- Less incentive for biobased materials
- Lack of transparency (difficult to communicate benefits)

-1/+1approach

Pros:

- Reflects the circular nature of biogenic carbon
- Provides clarity on carbon flows
- · Incentivizes the use of bio-based material

Cons:

- Complicates LCAs
- Challenging communication
- Misleading assumptions of neutrality

emendo consulting group

CONFIDENTIAL - All use of this material without specific permission from Emendo Consulting Group A/S ("ECG") is strictly prohibited . DISCLAIMER: This presentation is for the objective intended by ECG.ECG bears no liability for any other use thereof.

Take-aways

Moral dilemma of using the 1st Generation bio-based feedstock

If scaled, the use of 1st Generation feedstock (feedstock that could be used as food) may interfere with food supply chain.

CONFIDENTIAL - All use of this material without specific permission from Emendo Consulting Group A/S ("ECG") is strictly prohibited. DISCLAIMER: This presentation is for the objective intended by ECG. ECG bears no liability for any other use thereof.

Take-aways

The medical device sector currently favors **bio-based non-biodegradable** plastics and focuses on **bio-attributed** plastics.

Bio-attributed plastics do **not compromise** patient **safety** or product **performance** and are **compliant** with industry standards.

The medical device sector **accepts** the **mass balance** approach understanding its limitations.

Bio-attributed plastics can be **seamlessly** implemented, bring substantial **carbon footprint benefits**, but come with non-insignificant **premiums**.

The range and bio-attributed plastics is broad, and the global annual **volumes** are **increasing**. The **supply** is **stable**.

17

Pros and cons of bio-attributed plastics

Current situation in a nutshell: GREAT INTEREST but NO ACTION

Pros

- Substantial carbon footprint benefits
- Global availability increasing
- Stable supply chain
- Wide range of available feedstocks
- Decoupling from fossil fuel dependence
- Often 'drop in' replacements
- Plastics with properties same as fossil-based
- Same recycling streams as fossil-based
- Good marketing potential

<u>Cons</u>

- Non-insignificant premiums
- Challenging carbon footprint calculations
- Challenging internal communication
- Need to transparently communicate mass balance externally
- Still **'only' mass balance**

So why is the market stuck?

Premiums to high? Mass balance being problematic? Communication too complicated? Lack of time or clear strategy?

Emendo's areas of expertise within product sustainability

Thank you!

Piotr Mazurek pima@emendo.com +45 21 77 40 69 Scientific Senior Consultant PhD Polymer Science

emendo

Research & Development

Hanne Everland he@emendo.com +45 93 98 08 64 Vice President PhD Polymer Science

