

Creation to Compost

Nicolaj Ma M.Sc. Specialist

Nordic Bioplastic Conference 2025 24th April 2025

11,000 satisfied customers

*Source: The Institute's customer satisfaction evaluation. The assessment is based on 2,428 respondents.

Teknologisk Institut

We offer three types of services

Validation

We validate and document technological solutions through tests and trials in our state-of-the art technology infrastructures.

Development

We run extensive research projects and develop pioneering technological solutions.

Integration

We integrate and implement technological solutions aligned with market, organisation, environment and culture.

DANISH TECHNOLOGICAL INSTITUTE

Strategic focus

Global challenges

- Climate crisis
- Geo political crisis
- Growth/recession

The Institute's development focus

- Food
- Materials
- Energy

Center for Bioressources

Biosolution Teknologi Center

- Multifunctional pilot facility
- Industrial infrastructure
- Prototype production and validation
- Process and technology evaluation
- Data treatment

Biorefinery

- Evaluation and utilization of sidestreams
- Procesdevelopment
- Wet and dryfractionation
- Enzyme hydrolysis
- Separation, purification, drying
- Alternative proteins

Fermentation

- Precision fermentation
- New ingredients and functional products
- Biomass cultivation incl. mikroalgae, fungi, bacateria, macrophages
- Cell harvest, cleaning, drying

Microalgae

- Design of microalgae production
- Stable production facilities
- Upscaling for pilotscale photobioreactors
- Optimization of growth conditions

Biomaterials

- Biomaterials and product development
- Fibre for pulp and packaging
- "End-of-life" evaluations
- LCA
- TEA (Tekno-economic analysis

Case 1: Bioplastics from algae

Alginate Extraction and Processing

• What is Alginate?

- A natural polysaccharide extracted from brown algae (seaweed).
- Composed of two uronic acids: mannuronic acid (M) and guluronic acid (G).
- Biodegradable, biocompatible, and non-toxic.

Harvesting:

• Seaweed is harvested from the ocean, either wild or cultivated.

• Extraction:

- Washing and drying the seaweed.
- Alkaline extraction using a solution like sodium carbonate.
- Filtration to remove impurities.
- Precipitation of alginate as alginic acid or sodium alginate.

Alginic acid consisting of guluronic acid and manuronic acid

Seaweed (Saccharina latissima) harvested at Faroe Islands Teknologisk Institut

Conversion to bioplastic

• Conversion to Bioplastic:

- Alginate can be processed into films, beads, and other forms by techniques like solution casting, extrusion, and 3D printing.
- Often cross-linked with calcium ions (Ca2+Ca2+) or other divalent cations to improve strength and water resistance.

• We have worked with additives to improve

- ✓ Increase tensile strength
- ✓ Improve barrier properties for thin films
- ✓ Makes material shelf stable when moisture present
- ✓ Identified suitable mold release agent
- ✓ Tested additives effect on dewatering
- ✓Adjusted plasticizer for use in films or pelletizing

Alginic acid consisting of guluronic acid and manuronic acid

Teknologisk Institut

Compounding (good extrusion)

Injection molding

- Injection molding with alginate is possible
- Requires precise fine tuning.
- Challenges include mold filling, drying, and deformation at temperatures up to 130 °C and injection pressures of 1300 bar.
 Optimal conditions require external drying, and the dried material resembles bendable plastic.

Injection molding

Injection molded AlgaePlast

Hot pressing (cups)

Laser cut blanks

Polished mold

Hot pressing at elevated pressure and temperature Teknologisk Institut

Prototype cups and trays

Hot pressing

Biodegradability

 Material passes home biodegradability tests, surpassing cellulose in degradation speed

100% 90% ---- Scienciox AlgaePlast ---- Cellulose 80% 70% Biodegradability (%) 60% 50% 40% 30% 20% vecceseseseseseseses 10% 0% 50 20 60 10 30 40 70 80 \cap Days

Biodegradation in compost (25 °C)

Teknologisk Institut

	OK Compost	———— OK Biodegradab		e ——	
Guidelines based on guidelines for plastic and packaging products.	Compost 58 °C / 30 °C 6 mo / 12 mo	Soil 25°C 24 mo	Marine 30 °C 3 mo	Water 25 °C 2 mo	
1. Material characterization	Characterization, Heavy metals, Carbon analysis				
2. Material biodegradability	ISO 14855	ISO 17556	ISO 22403 or ASTM D6691	ISO 14987 or OECD 301	
3. Product disintegration	ISO 16929 or ISO 20200	ISO 16929 or ISO 20200	ISO 22766 or ASTM D6691		
4. Ecotoxicity	OECD 208	OECD 208, ISO 11268-1	OECD 201		
5. Compost quality	NPK, pH, salts				

Biodegradability and compostability

Does the material really disappear?

- Ability to degrade with microbial activity
- Evaluation and decision making for product development
- To achieve product claims
- Increase branding value (certification)
- Customer acceptance of a product
- Law requirements (e.g. rule out oxodegradability)

What do we test?

- Raw plastics
- Textile fibers (Clothes, Carpets)
- Foils
- Trays
- Cups
- Coffee pods
- Coatings
- Plastic ammunition and shells
- Chewing gum
- Plant pots
- etc

Biodegradability

How Biodegradability is analyzed (ISO 14855)

- Organic carbon is determined in the sample
- Experimental setup uses glass vessels supplied with CO2-free air.
- CO2 is captured and measured in the output flow (titrimetric/NDIR)
- Temperature, pH and moisture controlled

NDIR measurement

Titrimetric setup

$$Biodegradation(t) \ [\%] = \frac{m_{CO_2,sample}(t) - m_{CO_2,blank}(t)}{ThCO_2}$$

Case 2:

Hunting wads

Ŀø

Ministry of Environment of Denmark

Environmental Protection Agency

Hunting wads case study

- Each year 20-30 tones hunting wads in the Danish environment
- Hunting wads are made of conventional plastics
- Several knowledge gaps
 - Market/ product analysis
 - Functionality
 - Potential biodegradability

- Selecting representative products (4 products)
- Development of protocol to test under Danish conditions
 - Adjustment of standard (ISO 14855)
 - AVR summer (21°C) and winter 5° C
 - Compost/soil

- Closing knowledge gaps
- Identification of real biodegradable material
- Supporting product development
- Advising for future political decisions

Hunting wads case study

Papirfibre

Ministry of Environment of Denmark

Environmental Protection Agency

Hunting wads

Scan to read report

PVAL

PE

PHA

Disintegration (laboratory scale)

How Disintegration is analyzed (ISO 20200)

Sample preparation

• Samples are cut to 35x35 mm and vacuum dried

Compost preparation

• Synthetic compost prepared

Test setup

- Boxes with 1 kg compost + samples
- Adjustment of moisture level, mixing and visual assessment

Evaluation

• Sieving to <2mm should retain less than 10% of the original material

Case 3: Grass fiber-based paper for sustainable "togo" packaging products GUDP

SinProPack

PULPING PROCESS

Mechanical refining

- Thermomechanical pulping: high pressure and high temperature
- Chemo-mechanical pulping: chemical treatment before mechanical refining
- Chemo-thermomechanical pulping: combination of temperature, pressure and chemical treatments
- Bleaching: pre-treatment with hydrogen peroxide
- Enzymatic treatment

REFINED FIBERS

Handsheet

PROCESS DEVELOPMENT

MINI-PAPER FACTORY (MPF)

- MPF is a compact paper molding machine designed at Danish Technological Institute
- Primary application area is prototyping and pilot manufacturing of customer-specific fibre-based packaging – flat sheets, trays, cups, bowls, plates etc.

Main features

- ✓ Fast and convenient mold interchange
- ✓ Full controllability of process parameters
- \checkmark Ideal for research or piloting
- ✓ Easy to upscale
- Extremely low initial pulp volume of only 50 L

Technical specifications

- Overall dimensions: 1600 (H)×1500 (W)×1200 (L) mm
- Footprint: 1.8 m²
- Power consumption: 14 kW
- Maximum overall dimensions of a molded object: 150 (H)×200 (W)×300 (L) mm
- Average capacity: 30 molded objects per hour

EXCEPTIONAL ABRASIVE STRENGTH OF GRASS-DERIVED CELLULOSE FIBERS

Bleached softwood Kraft

Unbleached softwood Kraft

Pure SinProPack grass fibers

FIBER DETACHMENT (DUSTING) AND SURFACE POROSITY OF THE MOLDED PULP

100% Unbleached Kraft pulp (UKP)

50% UKP and 50% SinProPack grass fiber pulp

PECULIARITIES OF WET MOLDED PULP THAT TYPICALLY AFFECT PERFORMANCE OF WATER-BASED BARRIER COATINGS

Surface roughness

- Detachment (uplift) and dusting of fibers fibers protrude from the coating layer of a regular thickness
- Pulp porosity
- Hydrophilicity and water absorption of Kraft fibers

Molded pulp with SPP fibers does not have all these shortcomings and would be an excellent substrate for water-based barrier coatings

Disintegration results

Testing Period: 60 days under controlled composting at 21°C

Findings:

- 10% Grass Fiber Paper: 90.8% ± 2.6 disintegration
- 20% Grass Fiber Paper: 90.1% ± 0.2 disintegration

Implication:

✓ Both results meet the ≥90% pass level required by ISO 20200:2023

Observations:

- Material was very fragile and barely distinguishable from compost upon sieving.
- Test validated by reduction in volatile solids and minimal variance.

DANISH TECHNOLOGICAL INSTITUTE

SinProPack 10% grass fiber

SinProPack 20% grass fiber

Disintegration (pilot scale)

Disintegration (pilot scale)

Sample preparation

• Samples are cut to 50x50 mm and vacuum dried

Compost preparation

• A biowaste is mixed with the biopolymer in 60L barrels

Temperature

• Temperature and oxygen is monitored within the compost to closely follow a specific temperature profile (45-70°C)

Evaluation

• Sieving to <2mm should retain less than 10% of the original material

Custom built pilot scale composting

Pilot scale industrial composting (45-70 °C)

Teknologisk Institut

Pilot scale industrial composting (45-70 °C)

Compost mixing with bioplastic cups made from coffee grounds

Teknologisk Institut

Ecotoxicity

Ecotoxicity test

Sample preparation

• Chosen seeds are sprouted in the compost from pilot disintegration

Compost preparation

• Controlled light, relative humidity, temperature and watering

Evaluation

• Dry weight and emergence of harvested should be at least 90% that of control

Difference shows ecotoxic effect

Biomaterials

'alue hain	Production	Characterisation	Biodegradation and composting tests	Certification
>0	 Optimized bio fermentation Pulp treatments Enzymatic hydrolysis 	 Strength testing Humidity tolerance Phase chance Melting 	 Material characterisation Material biodegradation Product disintegration Ecotoxicity test Compost quality 	 Material characterisation Material biodegradation Product disintegration Ecotoxicity test Compost quality
Customer services				TUV AUSTRIA
Focus	 Bio fermentation Fiber-based Side streams 	FTIRTensile strength	 Compost, soil, marine and water Ecotoxicity tests Compost quality Micro plastic screening 	 (in audit) OK Compost HOME and INDUSTRIAL REAL (UK)
R&D projects	 TRACE, DK FBCD Plan Danmark, DK 	FBCD, DkMADE Demonstration	FBCD, DKClosing LoopHE, EU	-

Fermentation of biomaterials

Precision fermentation

Thank you!

DANISH TECHNOLOGICAL INSTITUTE

nima@dti.dk www.teknologisk.dk