Lignin-based thermoplastics

A non-compromising solution for an industry in transition

Fredrik Malmfors CEO Lignin Industries

Lignin Industries

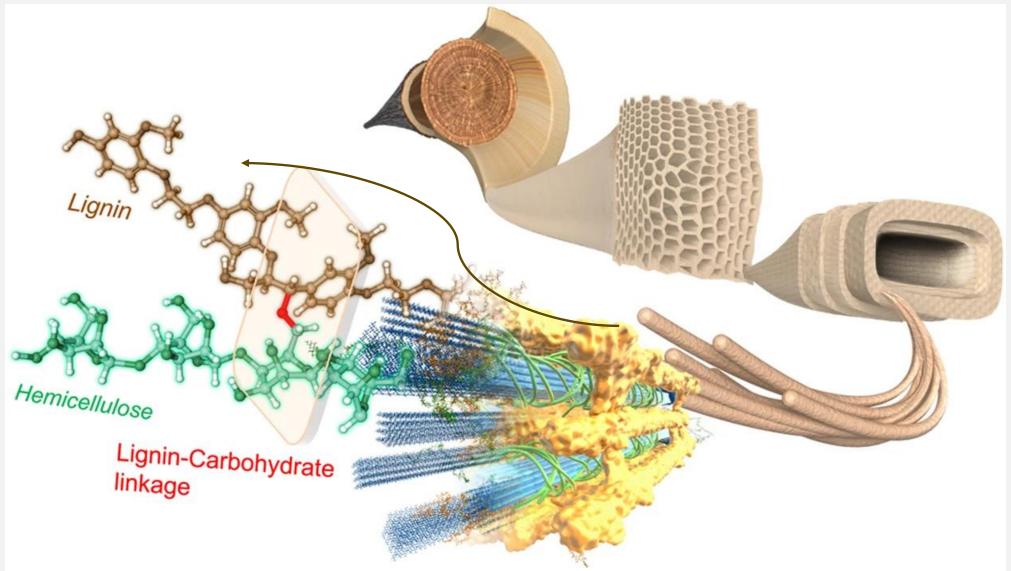
Building the most cost efficient and easily scalable CO2 reduction for a plastics industry in urgent need of transition

Vision

A world where sustainable plastics are the norm, not the exception

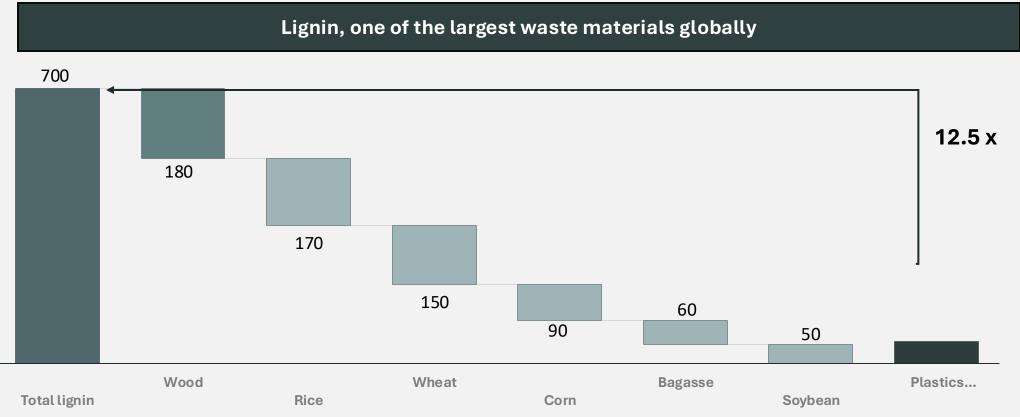
Mission

Re-shaping the future of plastics through the power of lignin

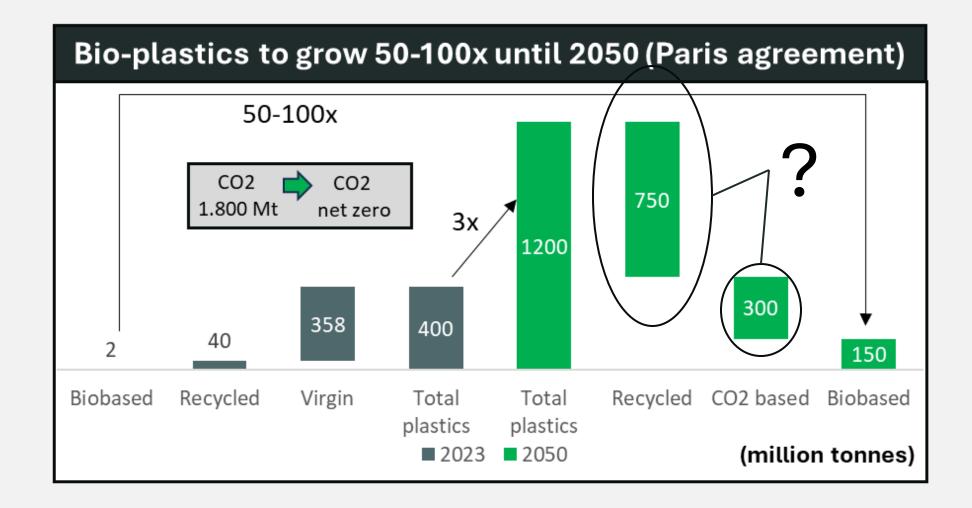


Re-shaping the future of plastics through the power of lignin

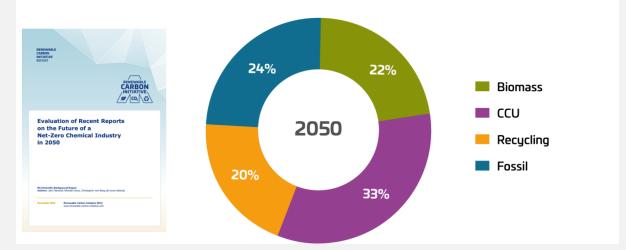
- » Founded in Sweden 2018 by Christopher Carrick
- » 20 FTEs
- » First production plant in Knivsta north of Stockholm with 2000 tons p.a. capacity
- » Patented technology to transform lignin into a renewable bio-based thermoplastic, Renol®
- » Building the most cost efficient and easily scalable CO2 reduction
- » Applications within LDPE films, PP and ABS moulds among others
- » 160 MSEK raised so far


This is lignin

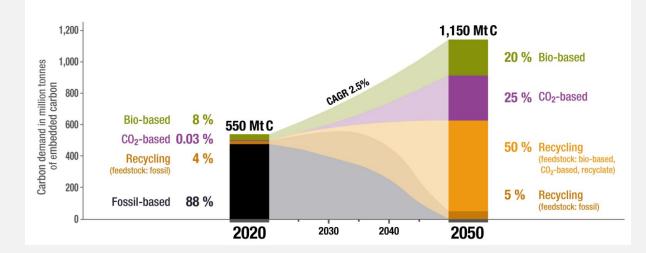
LIGNIN


INDUSTRIES AB

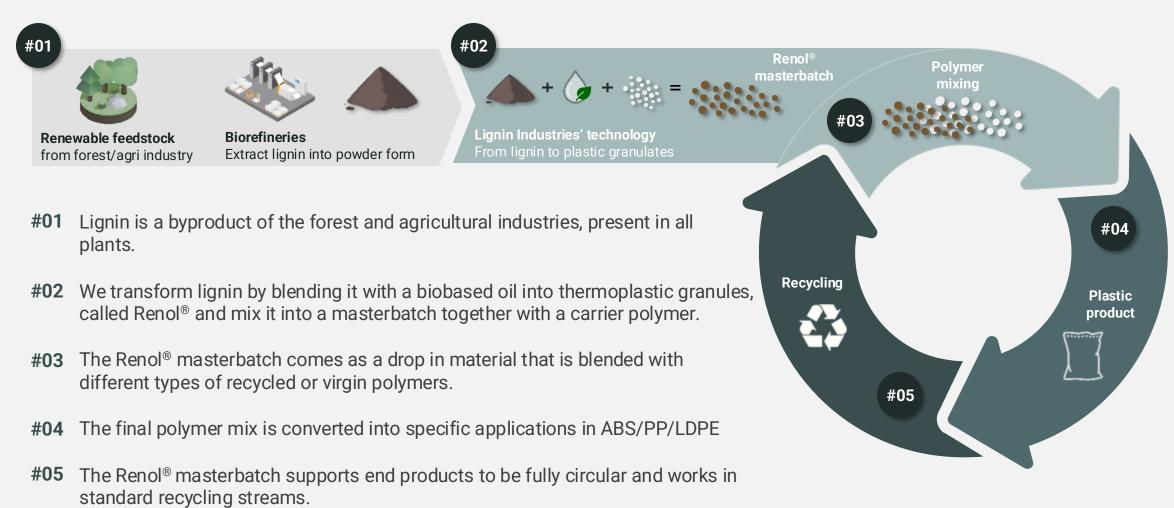
Our solution uses Lignin - the untapped natural resource


- » Lignin is a large part of anything that grows in nature 30% of a tree is lignin!
- » Annual volumes of Lignin is over 700 million tonnes
- » Lignin is treated as waste, it is typically burnt or just left to degrade in nature

No matter how you look at it – there are some big gaps to fill until 2050


All reports have been increasing the forecasted numbers for biomass usage by 2050

Net-Zero Chemical Industry – Mean Feedstock Shares (%) Across 16 Scenarios From 9 Reports



Carbon Embedded in Chemicals and Derived Materials

updated nova scenario for a global net-zero chemical industry in 2050

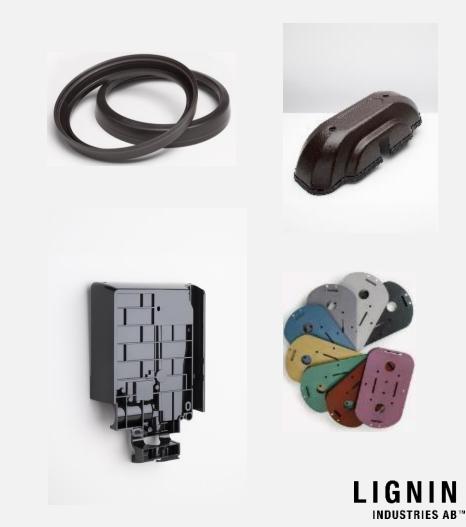
Using lignin-based thermoplastics can replace up to 40% of the fossil raw materials

Renol[®] is actually working and meets all important requirements

Truly sustainable

Renol® is biobased and enables final products to meet Paris targets already today

Truly circular Renol® is based on a biobased secondary (waste) material recyclable in standard recycling infrastructure


High-performing (process and product) Processed in existing process and tooling with same or improved capacity

Easily scalable Large availability of raw material and no/very low CAPEX needed to increase production

Cost competitive

The most cost-efficient bio-plastic on the market when we scale(?)

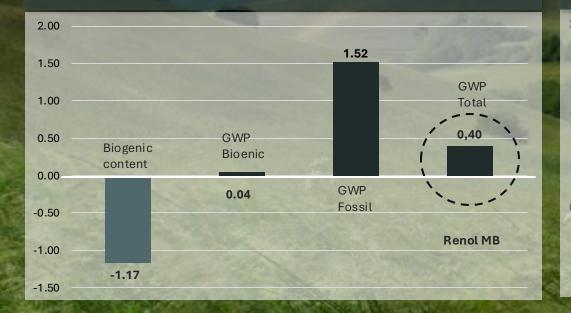
Renol[®] does not hinder recyclability of end applications

Renol[®] is recyclable both in standard open- and closed-loop recycling streams

	Sortability	Processability	Mechanical properties
Renol® in ABS	 Closed loop Open loop N/A 	 Processable at temperatures up to at least 230°C 	 Maintains properties better than virgin ABS when recycled
Renol® in LDPE	 Closed loop Open loop below 30% Renol[®] Two InterZero certifications received (more in process) 	 Processable at temperatures up to at least 230°C 	 Maintains properties better than virgin LDPE when recycled
Renol® in PP	 ✓ Closed loop ✓ Open loop below 35% Renol[®] 	 Processable at temperatures up to at least 230°C 	 Maintains properties better than virgin PP wher recycled

We offer a different - and complementing - solution to existing materials in the market

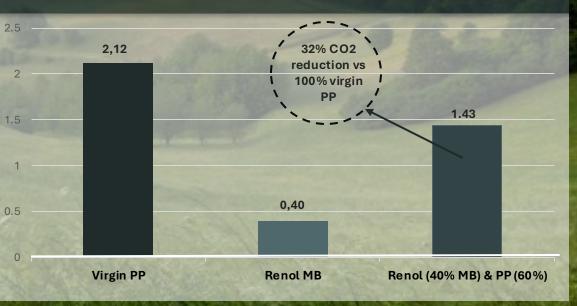
	RENOL®	PLA	Biobased PE	TPS (Starch)
	- And			
Feedstock	Lignin – Forest/Agri by-product	Sugarcane - Cultivated	Sugarcane - Cultivated	Starch - Cultivated
Main Geography Competition to food production	Europe, North America No	North & South America, Asia Yes	South America Yes	Europe, North America Yes
Resource use – Raw material = End Material	0.94 ton lignin + 0.06 ton bio-oil =1 ton RENOL® = no waste	11 ton sugarcane =1 ton PLA =10 ton waste	33 ton sugarcane =1 ton Bio-PE =32 ton waste	4.2 ton potato =1 ton TPS =3.2 ton waste
OPEX (costs per kg produced)	Low	High	High	Low
CAPEX (est. CAPEX per ton annual prod.)	1000 EUR	8000 EUR	4000 EUR	3000 EUR
Versatility – potential to use in different plastic applications	High	Low	Medium	Low
Mechanical Prop.	Similar to virgin	Low	Similar to virgin	Low
Processability	High	Low	High	Low
Carbon footprint	-1.9 kg CO2/kg	2,4 kg CO2/kg	~-2 CO2/kg	~2 kg CO2/kg
Recyclability	High	Low	High	Low


Becker et al. 2023 Biopolymers facts and statistics 2022

10.13140/RG.2.2.24122.06081.

11

CAPEX refers to public statements about investments and capacity in new plants from leading players. Total CAPEX for producing pellets from raw material.


Using lignin-based thermoplastics opens a path to decarbonize the plastics industry

According to ISO 14040, ISO 14044 and ISO 14067.

Cradle-to-gate data

GWP (kg CO2-eq./kg) for 1 kg of 50% Renol® Masterbatch in PP CO2 reduction on the material with 20% Bioplastics in PP

Indicative kg CO2-eq./kg product emissions, IPCC method. Ecoinvent v3.8-3.10 database. Cradle-to-gate data. *Example compound, calculated as produced at Lignin Industries

Example research project – BioForm

Main challenges

- Lead times
- Make the recycling industry understand that biomaterials NEED TO BE part of the future
- Get the European plastics industry to DRIVE instead of pushing back

Pls remember - we are different....

We are NOT

a stand-alone material bio-degradable bio-compostable driving high CAPEX

WE ARE

Easy to use in existing equipment Using secondary biomass as raw material Highly scalable Recyclable in open loop Brown©

