Sustainable Polyesters to Replace High T_g CommodityPlastics

Robert-Jan van Putten 24 April 2025

Where are we today?

Some plastics facts & figures*

The bulk of this material costs <€2/kg

- 2022 global plastics production: 400 Mt
 - Excluding rubber (tyres), fibers (textiles, carpets), thermosets and recyclate
- 5-6% of all oil \rightarrow plastics
- 2 Mt/yr bio-based (0.5%)
- 8 Mt/year "leakage" of plastic waste into the environment
- 3.5% average demand growth per year

* https://ourworldindata.org/faq-on-plastics#how-much-plastic-and-waste-do-we-produce

How much do we spend on plastics?

- World population ~8 billion
- Yearly consumption 50 kg per person (NL ~120 kg)
- ~€100 per person per year (NL ~€240)
- GDP per capita DK ≈ €60,000
- Sustainable alternatives are not affordable???

What premium are we talking about for Plantbottle PET ?

n PTA + n MEG \rightarrow --(OCH₂CH₂OCOC₆H₄CO)_n-- + 2n H₂O 865kg + 323kg \rightarrow 1000 kg + 188 kg

MEG is 27% of feedstock; bio-MEG is 100% more expensive \rightarrow Plant bottle PET is 27% more expensive

Coca-Cola: 2 Mt/yr PET (@ \in 1200/ton) = \in 2.4 Bn/yr \rightarrow 27% premium is \in 650M/yr. Consumer is blamed! (not willing to pay)

A problem for the consumer? 1L Coca-Cola PET bottle is 23.8 g (42 bottles/kg) $\rightarrow \&0.0286$ /bottle. 27% premium bottle is &0.0077 per bottle ! 365 1L bottles/year (8.3 kg) $\rightarrow \&3,00$ premium

Contents nots available at belencebileet

Journal of Environmental Psychology

journal homepage: www.elsevier.com/locate/jep

Applying an attitude network approach to consumer behaviour towards plastic

Maria V. Zwicker^{a,*}, Hannah U. Nohlen^a, Jonas Dalege^a, Gert-Jan M. Gruter^b, Frenk van Harreveld^{a,c}

reference sustainability

UNIVERSITY OF AMSTERDAM

Maria Zwicker

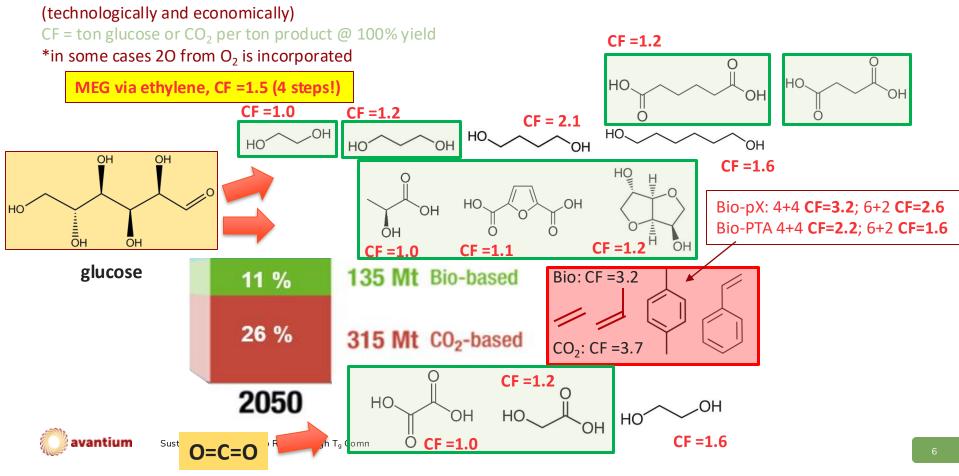
Article (Not) Doing the Right Things for the Wrong Reasons: An Investigation of Consumer Attitudes, Perceptions, and Willingness to Pay for Bio-Based Plastics

Contents lists available at ScienceDirect

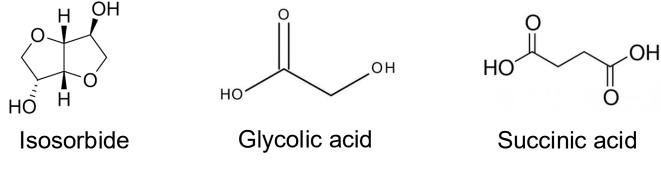
Maria V. Zwicker ^{1,*}^(D), Cameron Brick ¹^(D), Gert-Jan M. Gruter ^{2,3}^(D) and Frenk van Harreveld ^{1,4}

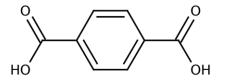
Sustainable Production and Consumption

journal homepage: www.elsevier.com/locate/spc


Consumer attitudes and willingness to pay for nove bio-based products using hypothetical bottle choice

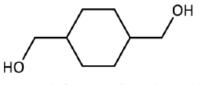
Maria V. Zwicker^{a,*}, Cameron Brick^a, Gert-Jan M. Gruter^{b,c}, Frenk van Harreveld^{a,d}


75% of participants was prepared to pay €0.05 (or more) for 1L bottled water



Which molecules make (most) sense from Glucose and CO₂

Promising and available monomers From (potentially) sustainable sources

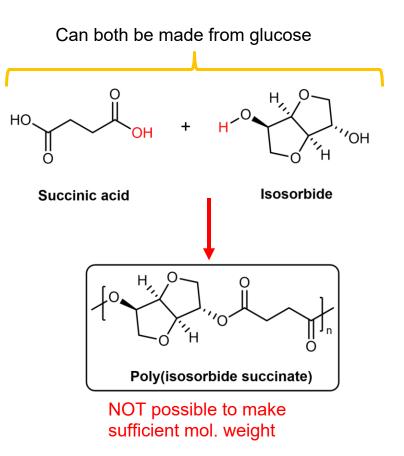


Terephthalic acid

OH HO

Oxalic acid

1,4-cyclohexanedimethanol (CHDM)


Our target: isosorbide

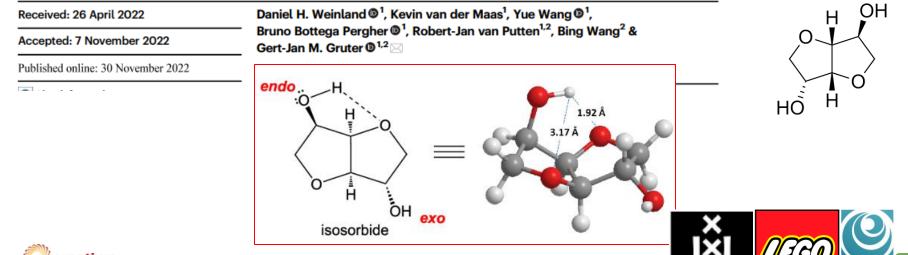
- (Co)polyesters with isosorbide + renewable diacids
- Example: Poly(isosorbide succinate)

Diacid/diester	M _n [kg/mol]	PDI	T _g [°C]	Ref.
Succinic acid	3.1 ª	1.6	68	9
Succinic acid	2.9	1.3	73	30
Succinic acid	1.2ª	2.5	59	31
Succinic acid	7.3 ^b	1.7	65	12
Dimethyl succinate	13.4 ^a	1.6	56	11
Succinic anhydride	2.9 ^a	1.7	74	32
Succinyl chloride	8.6 ^a	1.9	78	33
Succinyl chloride	7.7 ^a	1.8	36	29
Succinyl chloride	10.8 ^b	2.1	56	34
Succinyl chloride	7.5 ^a	1.4	65	35

Molecular weights were determined by SEC. ^a Polystyrene was used as a SEC calibration standard. ^b Poly(methyl methacrylate) was used as a SEC calibration standard.

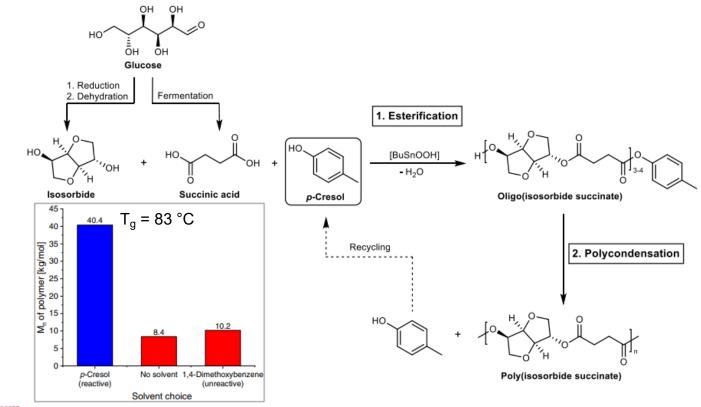
nature communications

Article


https://doi.org/10.1038/s41467-022-34840-2

6

Overcoming the low reactivity of biobased, secondary diols in polyester synthesis


Daniel Weinland

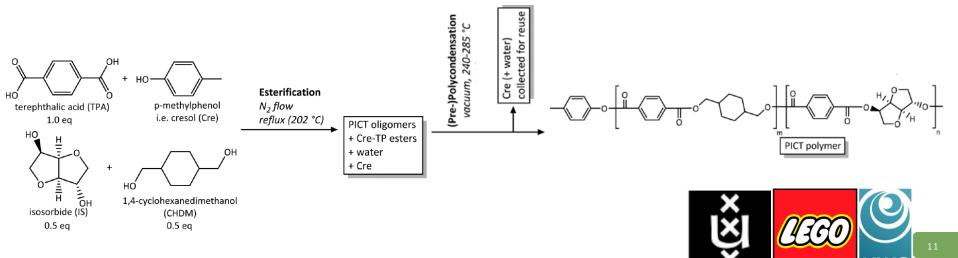
Sustainable Polyesters to Replace High Tg Commodity Plastics

How did we overcome this?

Sustainable Polyesters to Replace High T_g Commodity Plastics

Polymer Chemistry

View Article Online View Journal

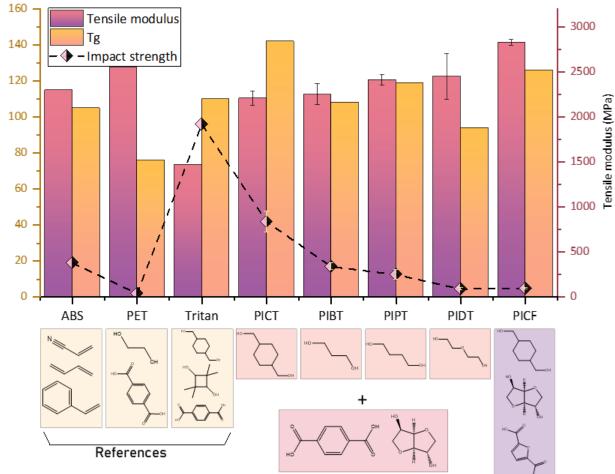


PAPER

Cite this: DOI: 10.1039/d2py01578a

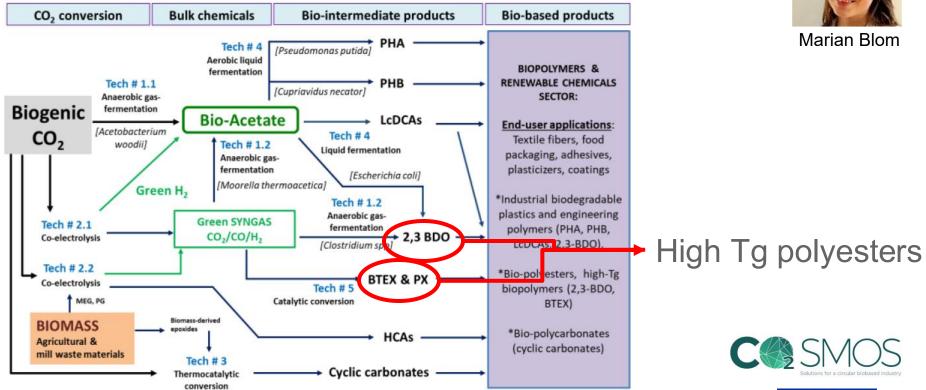
Reactive phenolic solvents applied to the synthesis of renewable aromatic polyesters with high isosorbide content[†]

Bruno Bottega Pergher,^a Narcisa Girigan,^a Sietse Vlasblom,^a Daniel H. Weinland,^a Bing Wang,^b Robert-Jan van Putten^{a,b} and Gert-Jan M. Gruter ^b*^{a,b}



Bruno Bottega

Pergher


ABS

- Acrylonitrile, butadiene, styrene
- Essentially non-recyclable
- Tg (°C) and impact strength (kJ/m²) Market ~15 Mt/yr @ ~€2.10 per kg
- Consumer electronics, toys, car parts, etc.
- Cost of application dwarfs cost of material

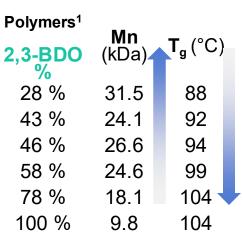
The CO2SMOS project (15 partners)

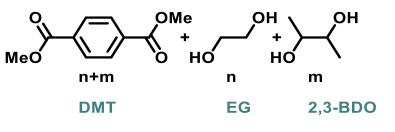
Sustainable Polyesters to Replace High T_g Commodity Plastics

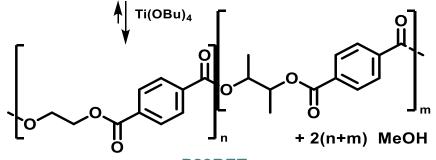
The CO2SMOS project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°101000790.

13

Polyesters synthesized P23BET (a PETG)


TE step


- Excess diol
- Overnight
- T_{oil} 210 °C

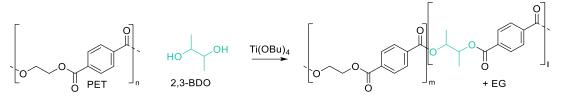

PC

- Reduced pressure (remove excess)
- T_{oil} 210 → 250 °C

High % 2,3-BDO: x Reaction time ↑ x Molecular weight ↓

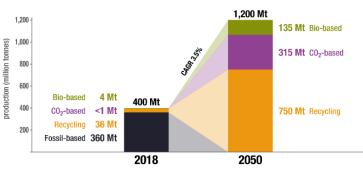
P23BET

Sustainable Polyesters to Replace High T_g Commodity Plastics


1. Blom, M.; Van Putten, R.-J.; Van Der Maas, K.; Wang, B.; Klink, G. P. M. V.; Gruter, G.-J. M.. Polymers 2024, 16 (15), 2177. https://doi.org/10.3390/polym16152177.

Chemical upcycling

From PET synthesis:

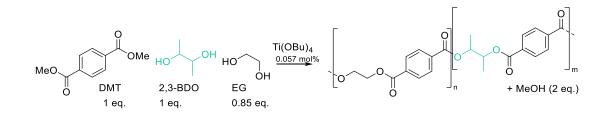


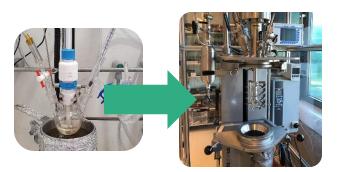
R-PET from supermarket tomato & grapes packaging

World Plastic Production and Carbon Feedstock

in 2018 and Scenario for 2050 (in million tonnes)

The virgin plastic production of 364 Million t in 2018 will increase to 450 Million t in 2050, completely based on renewable carbon. The total demand for plastics of 1,200 Million t in 2050 will be mainly covered by recycling.


available at www.renewable-carbon.eu/graphics



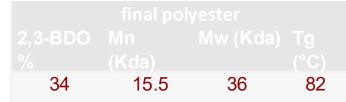

avantium Sustainable Polyesters to Replace High T_g Commodity Plastics

Figure World Plastic Production and Carbon Feedstock. Nova insttute: https://renewable-carbon.eu/publications/product/world-plastic-production-and-carbon-feedstock-in-2018-and-scenario-for-2050-graphic/

Polyester at larger scale

Long reaction time overnight Degradation \rightarrow sample Mn 20

Sustainable Polyesters to Replace High T_g Commodity Plastics

1. Blom, M.; Van Putten, R.-J.; Van Der Maas, K.; Wang, B.; Klink, G. P. M. V.; Gruter, G.-J. M., Polymers 2024, 16 (15), 2177. https://doi.org/10.3390/polym16152177.

Acknowledgements

