Dansk Algeplast

Who is Dansk Algeplast?

- Henrik Truelsen

- Electronic engineer

- Worked in production, mainly as a consultant

Challenges in biobased recourses on land

- Agricultural areas

- Nutrient overload

- Lack of biodiversity

m

ARCTIC OCEAN

Why algae?

- Grows generally faster

- absorbs excess nutrients

IFIC

- benefits marine ecosystems

- more water on earth, than land

- add only water

THERN OCEAN

ANTARCTICA

- We have too many nutrients in our waters.

- This feeds microalgae.

- An excess of this creates oxygen depletion and blocks the sun from reaching the ocean floor.

Danmarks udledning af kvælstof

Studies about our algae

- Out partner Dansk Tang has done measurements with Aarhus Universitet
- We are doing our own measurements, where we also measure the plastic - with Teknologisk Institut

Rererence	DM %	С	N	P	Ash	Crude pr	Total (cru	Carbo				
		%dm	%dm	%dm	%dm	%dm	%dm	%dm				
Average	18.60	30.90	3.60		11.75	20.54	9.53	54				
Conservative	18.6	27.1	1.1		19.8	13.5	1.3	42				
Optimistic	18.6	34.7	5.4		7.36	25.29	25	6				

Growth rates

- Dansk Tang has worked with DTU Aqua

- We have done own measurements

- Planning on building indoor facilities with Algecenter Danmark in Kattegat Centret

Dansk**TANG**

DTU

Table 1: ANOVA for the effects of temperature, light and interaction effects between the two factors for experiment I and experiment II. C (organic carbon); N (Nitrogen); C:N (weight ratio of C and N) and Chl a (Chlorophyll a).

Exp	Response	Factor	df	MS	F-Ratio	p-Value
I	Growth	Temperature	5	0.001	20.227	0.000
		Light	5	0.003	108.899	0.000
		Temp. x light	25	0.000	4.096	0.000
		Error	72	0.000		
Π	Growth	Temperature	3	0.000	6.260	0.002
		Species	2	0.002	33.104	0.000
		Temp. x Spec.	6	0.000	1.294	0.285
		Error	36	0.000		
п	С	Temperature	3	0.016	10.181	0.000
		Species	2	0.004	2.813	0.073
		Temp. x Spec.	6	0.004	2.521	0.039
		Error	36	0.002		
II	Ν	Temperature	3	44.150	27.592	0.000
		Species	2	2.911	1.820	0.177
		Temp. x Spec.	6	16.147	10.091	0.000
		Error	36	1.600		
II	C:N	Temperature	3	367.020	15.394	0.000
		Species	2	5.437	0.228	0.797
		Temp. x Spec.	6	166.975	7.004	0.000
		Error	36	23.841		
п	Chl a	Temperature	3	0.028	0.820	0.491
		Species	2	17.130	493.726	0.000
		Temp. x Spec.	6	0.224	6.443	0.000
		Error	36	0.035		

Irradiance (µmol photons m⁻² s⁻¹)

Positive climate impact

Chrom, Cr

56

94

-

22

-

13

-

31

Cadmium.

1,8

0,1

-

0.1

0,9

-

0,3

Cd

Arsen, As

4,3

3

2,2

17

38

μg/L

Bly, Pb

ug/L

10

-

3,1

-

2.8

-

3,1

-

3,3

-

Kobber

380

-

18

-

5.1

-

70

-

54

-

Си

Kviksølv.

-

< 0,2

-

< 0,2

-

< 0,2

-

- < 0.2

Hg µg/L Nikkel, Ni

32

-

61

-

19

-

10

-

15

Zink, Zn

μg/L

1500

-

68

-

52

920

-

52

-

- We looked into what sorts of other unwanted chemicals, we can also isolate and remove

- We mapped natural bacteria, that can facilitate biodegradability

- Will do PFAS measurements in the future

HVAD NU HVIS ALGEPLAST BLEV FREM-TIDENS FORETRUKNE PLASTMATERIALE?

3. semester projekt, Laborant-uddannelsen, EAAA

Material properties

-Tensile strength scores 2x of high tensile PE types

- can manipulate its solidity, from being 100% solid to having air pockets at the center, down to 5% solid.

What is possible?

- 3D printing Extrusion Injection molding
- Different composites for various types of products

Questions?

We would like to thank:

Food & Bio Cluster

